使用 cmake
#
就複雜度而言,cmake
介於 make
和 meson
之間。學習曲線較陡峭,因為 CMake 語法不是 pythonic 風格,且更接近於帶有環境變數的 make
。
然而,其權衡之處在於增強的彈性以及對大多數架構和編譯器的支援。語法介紹超出本文檔範圍,但這個廣泛的 CMake 資源集合非常棒。
注意
cmake
在混合語言系統中非常受歡迎,但是對 f2py
的支援並非特別原生或令人愉快;更自然的方法是考慮使用 scikit-build
費波納契 (Fibonacci) 演練 (F77)#
回到三種包裝方式 - 入門章節中的 fib
範例。
C FILE: FIB1.F
SUBROUTINE FIB(A,N)
C
C CALCULATE FIRST N FIBONACCI NUMBERS
C
INTEGER N
REAL*8 A(N)
DO I=1,N
IF (I.EQ.1) THEN
A(I) = 0.0D0
ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0
ELSE
A(I) = A(I-1) + A(I-2)
ENDIF
ENDDO
END
C END FILE FIB1.F
我們不需要顯式地產生 python -m numpy.f2py fib1.f
的輸出,即 fib1module.c
,這是有益的。有了這個;我們現在可以初始化一個 CMakeLists.txt
檔案,如下所示
cmake_minimum_required(VERSION 3.18) # Needed to avoid requiring embedded Python libs too
project(fibby
VERSION 1.0
DESCRIPTION "FIB module"
LANGUAGES C Fortran
)
# Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
message(
FATAL_ERROR
"In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there.\n"
)
endif()
# Grab Python, 3.8 or newer
find_package(Python 3.8 REQUIRED
COMPONENTS Interpreter Development.Module NumPy)
# Grab the variables from a local Python installation
# F2PY headers
execute_process(
COMMAND "${Python_EXECUTABLE}"
-c "import numpy.f2py; print(numpy.f2py.get_include())"
OUTPUT_VARIABLE F2PY_INCLUDE_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE
)
# Print out the discovered paths
include(CMakePrintHelpers)
cmake_print_variables(Python_INCLUDE_DIRS)
cmake_print_variables(F2PY_INCLUDE_DIR)
cmake_print_variables(Python_NumPy_INCLUDE_DIRS)
# Common variables
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(f2py_module_c "${f2py_module_name}module.c")
# Generate sources
add_custom_target(
genpyf
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
)
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
COMMAND ${Python_EXECUTABLE} -m "numpy.f2py"
"${fortran_src_file}"
-m "fibby"
--lower # Important
DEPENDS fib1.f # Fortran source
)
# Set up target
Python_add_library(${CMAKE_PROJECT_NAME} MODULE WITH_SOABI
"${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}" # Generated
"${F2PY_INCLUDE_DIR}/fortranobject.c" # From NumPy
"${fortran_src_file}" # Fortran source(s)
)
# Depend on sources
target_link_libraries(${CMAKE_PROJECT_NAME} PRIVATE Python::NumPy)
add_dependencies(${CMAKE_PROJECT_NAME} genpyf)
target_include_directories(${CMAKE_PROJECT_NAME} PRIVATE "${F2PY_INCLUDE_DIR}")
上面定義的 CMakeLists.txt
檔案的一個關鍵要素是,使用 add_custom_command
來產生 wrapper C
檔案,然後透過 add_custom_target
指令將其作為實際共享函式庫目標的依賴項添加,這可以防止命令每次都運行。此外,用於獲取 fortranobject.c
檔案的方法也可用於在較舊的 cmake
版本上抓取 numpy
標頭檔。
這樣一來,它的運作方式與其他模組相同,儘管命名慣例有所不同,並且輸出函式庫不會自動以 cython
資訊作為前綴。
ls .
# CMakeLists.txt fib1.f
cmake -S . -B build
cmake --build build
cd build
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
# [ 0. 1. 1. 2. 3. 5. 8. 13. 21.]
當現有的工具鏈已經存在,且不鼓勵使用 scikit-build
或其他額外的 python
依賴項時,這特別有用。